3x(x+14)=x^2+14x+196

Simple and best practice solution for 3x(x+14)=x^2+14x+196 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+14)=x^2+14x+196 equation:



3x(x+14)=x^2+14x+196
We move all terms to the left:
3x(x+14)-(x^2+14x+196)=0
We multiply parentheses
3x^2+42x-(x^2+14x+196)=0
We get rid of parentheses
3x^2-x^2+42x-14x-196=0
We add all the numbers together, and all the variables
2x^2+28x-196=0
a = 2; b = 28; c = -196;
Δ = b2-4ac
Δ = 282-4·2·(-196)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28\sqrt{3}}{2*2}=\frac{-28-28\sqrt{3}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28\sqrt{3}}{2*2}=\frac{-28+28\sqrt{3}}{4} $

See similar equations:

| 31-20+9a=47 | | f(×)=12-9× | | (x+14)(x+10)=280 | | 2(3x+4)=4x+10 | | 6x3+x2=2x | | 10(12)=x | | 10(12x)=x | | 1/3x+4x/6=0 | | 6x-8=7x+4 | | 4(5x+9)=31+59 | | 2(u+1)=4u+16 | | -5x+40=2(x-8) | | j−48=–46 | | m+2=9/2 | | (3x-3)(x-3)=72 | | -x-1-(-x)=x-2x-(-2) | | 3x-9x+5=0 | | (6+3)+(10*3)=n | | x+15=129 | | 48+12x=16(x+2) | | 2(12x+8x)=12x+168 | | x-+7=-12 | | 7(b-4)=8b-5 | | 2(y-3)=5(y+6) | | (18-4)+(5+3)=n | | 3^x+11=9 | | 2(x+4)/(x-2)+3=2x+1/x-2 | | 2(2d-11)=3d-34 | | 26-2n=-4(-2n+6) | | 8e+64=-8e-14 | | (2x+7)=(6x–9) | | 0.75h=36,000 |

Equations solver categories